量子计算的前景令人期待,它在基础科学研究、新材料和药物研发、类脑人工智能技术开发等领域有潜在应用价值。
中国科学院物理研究所固态量子信息与计算实验室研究员范桁、副研究员许凯,与中国科学院物理研究所量子计算研究中心研究员郑东宁、副主任工程师相忠诚等合作,研发出超40比特的一维超导量子芯片,以战国时期思想家和哲学家庄子命名,利用其成功模拟了“侯世达蝴蝶”能谱以及各种新奇拓扑零模式。相关研究成果近日发表于《物理评论快报》。
“庄子”芯片诞生记 在科学家看来,大规模的量子计算正朝着实用化的方向发展,要想实现实用化,需要操纵精确、比特数多、相干时间长、效率足够高。在这个过程中,量子芯片的设计、制备、测控都至关重要。
“量子芯片是一种非常脆弱的系统,稳定时间非常短,在芯片上运行量子算法就好像是在夏日里堆雪人,需要足够的速度,赶在雪融化前把雪人堆出来。通常超导量子芯片的相干时间大约在几十微秒量级,这意味着量子效应维持的时间只在一瞬,要在很短的相干时间尺度内精确执行完量子算法是比较困难的。”相忠诚解释道。
借助中国科学院物理研究所位于北京怀柔的综合极端条件实验室的超导量子计算实验平台,郑东宁与相忠诚在器件设计和制备实践中反复摸索思考,不断改进和优化器件的设计方法和制备工艺,完成了43比特一维超导量子芯片的设计和制备,芯片中整体比特参数与设计值一致,总体退相干时间、制备良品率、量子状态、易读性等都得到了大幅提升。部分比特退相干时间达到百微秒量级。
在最新发表的研究中,他们设计并构建了多达41个量子比特的对角AAH模型的各种实例,并应用动态光谱技术实验测量了著名的“侯世达蝴蝶”能谱。由于对角AAH模型的拓扑特性,出现了“翅膀形状”的能隙,整个能谱图看起来就像一只翩翩起舞的蝴蝶,研究人员不禁联想到庄周梦蝶的故事,这也是该量子处理器名字的由来。
因为“庄子”处理器拥有足够多的量子比特,有限尺寸效应的影响被极大地抑制,“蝴蝶”身体细节中的分形结构和能带的分裂被清晰展示了出来。
零下200多摄氏度的实验 量子芯片是第一步,利用多个超导量子比特模拟各种量子效应也是当前人们关注的前沿研究。
量子芯片只有指甲盖大小。拿到芯片后,许凯和团队成员立刻开始对芯片进行测控,并开展量子模拟实验。
超导量子计算芯片需要在极低温环境中工作,以避免热量(噪声)对量子态的干扰。
研究人员将芯片封装进盒子中,并放入稀释制冷机中降温至10mK,制冷机的温度比绝对零度(零下273.15℃)仅高了0.01℃,这种极低的温度可以使芯片转变为无损的超导态并有效抑制芯片周围的环境噪声和热噪声,从而呈现量子效应,让科研人员更好地操控量子效应。
操控芯片的过程并不轻松。在实验室,数十台仪器微波脉冲信号与“芯片”相连,研究人员在自己开发的软件平台上编写程序控制仪器,对芯片发出“指令”,从而“操控”芯片。“指令”发出的时间达到了纳秒级。
由于“庄子”量子处理器超过40个量子比特,这足以让研究人员在这个重要的一维量子多体系统复杂的能带结构中捕捉到大量拓扑特征。使用由高度可控的周期驱动调控技术辅助的超导量子处理器,研究人员提出了一种通用混合量子模拟方法来探索含噪声中等规模量子时代的量子拓扑系统。
前景广阔需要人才 许凯和相忠诚及其所在团队长期致力于超导量子计算、量子模拟、量子器件制备等方面的实验研究,并取得了许多领先的成果。在他们看来,量子计算前景广阔,未来还有很长的路要走。
在许凯看来,我国在量子计算方面与国际上最好的团队相比还存在一定的差距。量子计算是一个交叉学科,需要各方面的人才,他们期待新鲜血液加入量子团队。
(韩扬眉)